arXiv: 2305.09929 Slides: kangbo.dev/tdc_slides/index.html
Constrained minimization of the sum of the spread (omitting $\mathbf{k}$)
$$ \begin{aligned} \min_{U}\; \Omega(U), \quad \text{s.t. } U^{\dagger} U = I. \end{aligned} $$ A commonly used type of spread is $$ \Omega(U) = \sum_n \bra{\phi_n} \mathbf{r}^2 \ket{\phi_n} - |\underbrace{\bra{\phi_n} \mathbf{r} \ket{\phi_n}}_{\text{orbital center}}|^2 $$$\ket{\phi_{n}} = \sum_{m} U_{nm} \ket{\psi_m}$
Figure from Cancès, Levitt, Panati, and Stoltz, 2017.
Any definition of the center should move with the density $$ \mathrm{center}(\mathcal{T}_{\mathbf{y}}\rho) = \mathrm{center}(\rho) + \mathbf{y}. $$ This is inherently incompatible with gauge-continuity under PBCs.
The center of a distribution under open boundary conditions can be defined as "the point around which the distribution has the least second moment."
$$ \begin{aligned} \mathbf{c}^* & \triangleq \argmin_{\mathbf{r}'} \int \rho(\mathbf{r}) (\mathbf{r} - \mathbf{r}')^2 \mathrm{d} \mathbf{r} = \int \rho(\mathbf{r}) \mathbf{r} \mathrm{d} \mathbf{r} \\ s & \triangleq \min_{\mathbf{r}'} \int \rho(\mathbf{r}) (\mathbf{r} - \mathbf{r}')^2 \mathrm{d} \mathbf{r} = \int \rho(\mathbf{r}) (\mathbf{r} - \mathbf{c})^2 \mathrm{d} \mathbf{r} \end{aligned} $$$s_{\mathrm{DC}}$ is global in $k$-space, but we can spectrally approximate it with something local in $k$-space. The result is not new.
$$ \begin{aligned} s_{\mathrm{DC}} & {\color{#a44b69} \gtrapprox } s_{\mathrm{TDC}} \triangleq \sum_{\mathbf{b}} 2 w_{\mathbf{b}} (1 - |\hat{\rho}(\mathbf{b})|),\\ \hat{\rho}(\mathbf{b}) &= \frac{1}{N} \sum_{\mathbf{k}} M_{n,n}^{\mathbf{k}, \mathbf{k} + \mathbf{b}}, M_{n,n}^{\mathbf{k}, \mathbf{k} + \mathbf{b}} = \langle u_{n, \mathbf{k}} | u_{n, \mathbf{k} + \mathbf{b}} \rangle \end{aligned} $$Wannier90
(MV)WTP.jl
: Infrastructure code for grids and orbitals
SCDM.jl
: Our in-house code for localization.
arXiv: 2305.09929 Slides:kangbo.dev/tdc_slides/index.html
WTP.jl
sum(k->u[n, k]' * u[n, k+b], brillouin_zone)
This does what you expect $\sum_{\mathbf{k}} \langle u_{n, k} | u_{n, \mathbf{k}+\mathbf{b}}\rangle$.
Goals
Help needed with development and PL modeling of second quantization.